HW CHEM 362

Due: November 12, 2019

- 1. What is the crystal field stabilization energy? For an octahedral complex, how is the CFSE calculated?
- 2. Why is Δ_0 typically greater than Δ_t ? *Hint: you may want to include diagrams in your answer*
- 3. Classify the following as strong field or weak field ligands Is there a relationship between ligand type and field strength?
 - a. H₂O
 - b. CN_
 - c. Br
 - d. CO
 - e. NH₃
- 4. Calculate the crystal/ligand field stabilization energy for the following:
 - $a. \quad d^2$
 - b. d^4 (Low-spin)
 - c. d^4 (High spin)
 - d. d^8
 - e. d¹⁰
- 5. Which d electron counts are capable of giving rise to both low spin and high spin configurations? Show using orbital diagrams.
- 6. When can one expect a high spin configuration? Low spin configuration? Discuss this in the context of crystal field splitting energy and pairing energy.
- 7. For the following compounds: a) Draw the orbital splitting diagram b) If applicable, explain why you chose a LS or HS configuration c) Predict the magnetic properties (diamagnetic or paramagnetic?)
 - a. $[Fe(Cl)_6]^{3-}$
 - b. $[Cu(Cl)_6]^{4-}$
 - c. $[CoF_6]^{3-}$
 - d. $[Ti(H_2O)_6]^2$
 - e. [CoCl₄]²⁻
- 8. Give the ground state term symbols for the following free ions. *To receive full credit, you must show all your work*.
 - a. Ti²⁺
 - b. Mn³⁺
 - c. Fe³⁺

d. Cu^{2+} e. Zn^{2+}